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Abstract

Babuska and Oh have introduced a new approach called the Method of Auxiliary
Mapping(MAM), to deal with elliptic boundary value problems with singularities. In
this paper this method is extended so that it can handle the plane elasticity problems
containing singularities. In order to show the effectiveness, this method is compared
with the conventional approach in the framework of the p-version of the finite element
method. Moreover, it is demonstrated that this method yields a reasonable solution for
those elasticiy problems containing strong singularities which even can not be solved
by using the h-p version of the finite element method.
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1 Introduction

In ([8]) and ([30]), we introduce a new approach called the Method of Auxiliary Map-
ping, to deal with domain singularity and interface singularity, which arise in such
elliptic boundary value problems as steady state heat transfer. In this paper, this
approach is extended for plane elasticity problems containing singularities.

There are three versions of the finite element method: the h-version, the p-version,
and the h-p version. The h-version ([13],[35]) is the standard one, where the degree p
of the elements is fixed, usually at a low level, typically with p = 1,2, or 3 and the
accuracy is achieved by properly refining the mesh. The p-version {[10], [12], [36]),
in contrast, fixes the mesh and achieves better acenracy by increasing the degree p
of the elements uniformly or selectively. The # .:+on ([4)-[5], [11], [16]-[21]) is a
combination of both. In this paper, we are con.. - ...¢ #ith the p-version of the finite
element method.

In the theory and practice of the finite element method, much work has been done
to design special approaches to deal with elasticity probleins containing singularities
([25),{32],[33],[38]). Singularities occur when the solution domain has corners. abrupt
changes in boundary data, or consists of two or more materials. These siugularities
are called a corner singularity ([9},(15],[27],[34]), 2 boundary data singularity([29},i37]),
and an interface singularity([23],(26],[29],[31]), respectively.

In an effort to provide accurate and economical solutions, many different approaches
to deal with singularity in elasticity problems have been attempted over the years. Basi-
cally there are three ways the problem is approached: mesh refinement([7],[11],{16],{}7},
[18], [19], [20],[35]); use of special singular elements([1],[2],[22]); and use of (nonlocal)
special singular functions([24]). Expanding the trial space by adding special singular
(local or global) functions which mimic the singularities can lead to a more accurate so-
lution, but more problems will be generated, especially in computer coding. Moreover,
one must know the structure of the eigenvalues corresponding to the singular points
in order to choose proper singular functions. The most popular approach is the mesh
refinement, but its success depends on a proper choice of mesh and it also requires
longer computing time. Moreover, when the singularity is very strong, as in Example
5.11, this approach cannot give any acceptable results.

In this paper, the Method of Auxiliary Mapping introduced in ([8]) and ([30]) will be
modified so that it can efficiently handle the singularities which arise in plane elasticity
problems. It will be shown that this new approach yields far better results for elasticity I
problems containing singularities than do conventional approaches at virtually no extra T4
cost. Moreover, this method gives a reasonable solution for those elasticity problems d
which even can not be solved by using the h-p version of the Finite Element Method. a

This paper is organized as follows: The notations and the model problems to work
with are described in §2. In §3, the structure of the corner singularity and basic lemmas
are introduced. In §4, the Method of Auxiliary Mapping is explained in the context of oy
plane elasticity, and the improvement of error bounds by Method of Auxiliary Mapping goaes
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is presented. Various numerical results to demonstrate effectiveness of our method are
given in §5. These include an especially remarkable success in Examples 5.1 and 5.11
and MAM’s handling of interface singularities caused by an abrupt change in material
properties. Finally, the concluding remarks are given in §6.

2 Preliminary

2.1 The Notation

For € R? a polygonal domain with boundary 9, we let Lo(Q) = H°(Q), H*(Q), HE(Q),
k > 0 integer, denote the usual Sobolev spaces. For u € H*¥(Q) we denote by |ullxqa
and |u|xq, the usual norm and seminorm, respectively.

In elasticity, the state variable is the displacement vector denoted by
{u} = {u.(z,y),u,(z,¥)}T and the flux is the stress tensor denoted by {o(} =
{o,0(), 7807, Let {e®} = {, e, 7W}T be the strain tensor. Then the strain-
displacement and the stress-strain relations are given by

{¢™} = [D}{u} and {¢c)} = [E{¥} 1)
respectively, where [D] is the differential operator matrix:
-9 . -
Oz 8
2 4
| 0y Oz |

and [E] = [E;],1 < 4,j < 3, is the symmetric positive definite matrix of material
constants. For an isotropic elastic body, in the case of plane stress,

E 1 v 0

— v 1 0

[E] - 1—1/2 0 0 | ) b)
2

where E is the module of elasticity and (0 < v < 1/2) is Poisson’s ratio.
The equilibrium equations of elasticity are

[D]T{a(u)}(z, y)+ {fH=,y) =0, (z,y) €, (2)

where {f} = {fz(z,¥), f,(z,y)}7 is the vector of internal sources representing the boay
force per unit area.




2.2 The Model Problem

Introducing the relations (1) into (2), the equilibrium equations can be expressed in
terms of the displacement vector {u}. Consider the following system of the partial
differential equations in terms of the displacement vector:

[DI[END{{u}(z,¥) + {fHz,9) = 0, (z,9)€Q 3)

subject to the following boundary conditions:
[(M{e™}s) = {THs) = {T(), Tu(s)}”, se€T, (4)
{uls) = {a}(s) = {ials),ay(s)}", s€T?, (5)

where I UT? = 8Q, {n.,n,}7 is a unit vector normal to the boundary 99 of the
domain 2 and
_|n: 0 n
IN] = [ 0 n, n,]'
Let HH(Q?) = {{w} = {w.,w,} € [H(Q)]? : {w} = 0 on I'?}. Then, as usual,
the variational form of (3)-(5) is as follows: find the vector {u} such that u,,u, €
HYQ),{u} = {ii} on I'* and

B({u}, {v}) = F({v}), for all {v} € HH(9), (6)

where
B({u}.{v}) = [(DI{v})" [E) (1D} {})dedy, (™
F{o) = [{){f)dody + § (v} {T}ds. ®)

By the strain energy of the displacement vector {u} we meanU({u}) = (1/2)B({u}, {u}).

The finite element approximation of the solution of (6) is to construct approxima-
tions of each component of the vector {u}. We denote the basis functions defined on §2
by ¥;(z,y),t = 1,2,...,n. The components of the displacement vector in term of basis
functions ¥; are of the form:

uz(xay) = zﬂ:aiwi(xay)

=1
uy(z,y) = Y anpi¥i(z,y).
=1
where a;(i = 1,2,...,2n) are called the amplitudes of the basis functions ¥;. Let
(%} = { %ilz,9) },zf =1,2,.m (9)
0 :
{¥;} = { ¥;_(z,9) } yvd=n+1,n+2,..,2n. (10)
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Then {u} can be written as:
2n
{u} = Za.-{\l!.-}.
=1
Moreover we have the following:
Lemma 2.1 The bilinear form B({u},{v}) on an element e becomes

Jw | E ] () (0 = (0,007 and {u) = (3,007

frer | B2 o | 0w o 0} = (0,907 and (w1 = 0,97,

/(V‘I'J)T [ P g;: | (V) if {v} = {¥;,0}7 and {u} = {0, ¥;}",

fvwr | g p ] (V) if {v} = {0, %)7 and {u} = {¥;,0)".

3 The Corner Singularities

The accuracy of the finite element approximation depends on the regularity of the true
solution ([6]). In the presence of singularity the solution of (3)-(5) has a low regularity.
In this section the structure of the singularity due to nonsmoothness of the domain
will be investigated. For this purpose the equations of elasticity (3) will be localised
by restricting (3) on a neighborhood of a singularity of the domain §).

3.1 The behavior of a solution in the vicinity of nonsmooth
boundary

Let us consider the equations of elasticity (3) in the vicinity of a corner shown in
Fig. 3.1. When the body force is neglected, the equations of elasticity in the polar
coordinates system can be written as

8 3u, 16uo Uur 1 6 Oug 10u, wup,
1 u,. 1 Quy ug 10u, ‘ug,
€+ 56l 78 * —} bolar et 710 (12)
where
E vE
k= 21+v) and ¢ = (1+4v)(1-2v)’ (13)




which characterize materials. Here E is the module of elasticity and v is Poisson’s

ratio.
The radial and tangential stresses on the wedge surfaces are

Ou, 10 r
w - et

10u | ury
e 770
_ Oug 10u, 1y
O A L
Let us consider the solutions of (11) and (12) in the following form:

U, = rAf(O),
up = r'g(9).

(14)

(15)

(16)
(17)

Substitution of these forms inio (11) and (12) gives a system of ordinary differential

equations in f and g. One can see that the solution of this system has the form

F = Aicos[(1+A)0] + Agsin[(1 + A)6]
+Ascos(1 — A)6] + Agsin[(1 — A)6),

g = Azcos[(1+ A)f] — Aysin[(1+ A)4]
+nAqcos[(1 — A)8] — nAssin[(1 — 2)4],

(18)

(19)

where = (3 + A — 4v)/(3 — A — 4v). Then displacements and stresses in the vicinity

of the corner will be expressed as

r2u, = Ajcos[(1+4 A\)8]+ Azsin[(1+ )]
+Ascos{(1 — A)6] + Aqsin[(1 — A)4],
ruy = Agcos(1+M\)8] — Apsin[(1+ 2)f]
+nAgcos{(1 — A)8] — nAszsinf(1 — A)6],
p 20 = —2XA;cos[(1+ X)) — 2AAzsin [(1 4+ A)4)
—(14 )1 —n)Ascos[(1 - A)6]
—(1+ A)(1 —n)Aysin{(1 - A)6],
gt 20 = —20A;sin[(1 4+ A)8) + 22 Az cos[(1 + A)8]
—(1=X)(1 —n)Aasin[(1 — A)4]
—(1 = A)(1 = 1n)Ascos[(1-A)6].

(20)

(21)

(22)

(23)

From now on, "the wedge angle a” stands for "the wedge angle 2a”. Let us label
the boundary conditions along the boundaries § = o and § = —a of a wedge-shaped

region bounded by radii § = ta, as shown in Fig. 3.1, as follows:

BCy: uwy=u, =0,
BCz . Ogg =Tep = 0,
BC3: ug=14=0.
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In order to determine the eigenvalues ) and the constants A;, A3, A3, Ay, for various
boundary conditions on the boundary surfaces § = +a, these boundary conditions are
applied to the equations (20)-(23). Then because of the given boundary conditions, we
obtain the following trigonometric equations to determine the eigenvalues A (see, [25]
and [32] for details):

sin(2A\a) = =Asin(2a)/C if BC,-BC, is imposed,
sin(2Aa) = =Asin(2a) if BC,-BC, is imposed,
sin(2Aa) = =sin(2a) if BC3-BCj is imposed,
sin?(2Aa) = (14 A)?/4) — A?sin®(2a)/C  if BC,-BC, is imposed,
sin(4\a) = -—Asin(4a) if BCy-BCj3 is imposed,
sin(4\a) = Asin(4e)/C if BC,-BCj; is imposed,

where C = 3 — 4/v for plane strain and C' = (3 — v)/(1 + v) for the plane stress and
BC;-BC; means that BC; is on one side and BCj is on the other side of the boundary
surfaces, § = +a.

These trigonometric equations could have complex roots as well as real roots. For
various wedge angles a and for various boundary conditions, min{Re())} are computed
in (§3.8 of [32]). In particular, if the condition BCj is imposed on both of § = *q,
0 < a < 90°, then the smallest real eigenvalue A (min{Re(\)}) can be arbitrary small
as a goes to 90°. Fig. 3.2 shows the smallest real root ) of the trigonometric equation:
sin2\a = sin2q, for 75° < a < 90°. In such cases, the singularities are too strong to
obtain any reasonable approximations by standard numerical approaches. These cases
will be elaborated in Example 5.11.

Elastic Medium

Fig. 3.1. The vicinity of a singularity with wedge angle a.
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Fig. 3.2. The smallest eigenvalue versus the wedge angle a when the normal
displacement and tangential traction are zero along the boundary surfaces, § = +a.

3.2 The Computation of the Bilinear form on the Regions
transformed by Auxiliary Mappings

Now we consider an auxiliary mapping which will be used to describe our new approach
to deal with elasticity problems containing singularities. Let 2 = z+iy and { = £ +i7.
Let

S = {(r,6): 0

<
S* = {(*,0): O

< R,a <0<b}, (24)
rl

.
<r" <R',a/B < 6" <b/B} (25)

be two circular sectors in the z-plane and the (-plane respectively. Suppose ¢# : §* — S
is the conformal mapping defined by

z = P)=¢ (26)

and let ¥ be the inverse function of ¢?, then the determinants of their Jacobians are

T = BV and |J(@)| = 5o @)

8




respectively. We denote the shifted function onto S* of a function f : § — R by the
conformal mapping ¢? by f = f o .

The following lemma was proved in [30] and it will play a key role in the Method
of Auxiliary Mapping.

Lemma 3.1.  For u,v € H'(S), we have

T| @11 412 _ AT | Q11 q12 N
/S (Vu) [ o ] Vodzdy = /S (V@) [ I ] Videdn (28)
where
t= (1-8)
quu = a1 cos’t + agysin®t — (az + a;3)sintcost
qi2= (an — agz)sintcost — ag sin?t + a;3 cos® ¢
g1 = (a1 — ag;)sintcost — ayzsin®t + ag cos?t

ga2 = ansin’t + agcos®t + (a2 + az)sintcost,

and (r*,0") represents the polar coordinates of points in S*. For v € H'(S) end f €
HY(S), we have

[fevredsdy = [ B +aPfEmiendean.  (9)

Remark 3.2. (1) From Lemma 2.1, the bilinear form B({¥,}, {¥;}) for the basis
vector functions has the same form as the left hand side of the integrals in Lemma 3.1.
Thus, the local stiffness matrices on S by the basis vector functions (9)-(10) are the

same as the local stiffness matrices on S* by the mapped basis vector, {¥;} = {¥;} 0.

(2) Constraining the stiffness matrices on the elementsin S due to the non-homogeneous
essential boundary conditions {&,#%,}T along parts of the boundary @S of S has the
same effect as constraining the stiffness matrices obtained by the right hand side of
Lemma 3.1 by using the boundary conditions {ii,0¢?, ii,00°}7 along the corresponding
boundaries of S*.

4 The Method of Auxiliary Mapping: A New
Approach to Deal with Singularities

4.1 Description and Implementation of the Method

Overall structure of our method is as follows. From the arguments given in section 2.1,
if no body forces are present, then in a neighborhood Sp of a singular point P, each




component of the displacement vector can be written as

a(P)
up(r,0) = 3 K;F;(r)G;(8) + wqp)(r, 8). (30)

=1

Here (r,0) are the polar coordinates with respect to the singular point P. The func-
tion G;(#) is analytic up to the boundary of Sp and Fj(r) = Re(r*rslog®(r)) or
Im(r*?:log?(r)), where p = 0 except for some special angles. The eigenvalues Ap;
are in general complex numbers with positive real parts and Re(Ap;) < Re(Apj41).
F;(r),G;(0) depend on the interior (wedge) angle a; K; are stress intensity factors.
wq(p) is smoother than the first term on the right hand side of (30). Q(P) is a posi-

tive integer and Re(Apg(r)) < 1. Let ,\g,’ be the smallest real number of Re()\p;) and

suppose ,\}I} <l.Ifwelet g=1/ ,\S;I and (r*,0*) denotes the polar coordinate system
on Sp centered at P*, then

AP)
ip(r®,0%) = 3 K;F;((r")°)G;(86") + wo(p)((r"), B07) (31)

i=1

and ﬂ,\g} > 1for j = 1,..,Q(P). Therefore itp(r*,0°) = (up o ¢?)(r*,0%) is in
H™(Sp),m > 2.

Thus, on S}, the standard finite element method could yield a good approximation
of iip in H'(Sp). Since our auxiliary mappings are conforming and the mapping sizes
B are assumed to be > 1, the H-norm is preserved under the transformation by the
auxiliary mapping. Thus, approximating @tp in H*(S}p) by the standard finite element
basis functions defined on Sp has the same effect as approximating up on Sp in H!(Sp)
by using singular basis functions on Sp constructed through the auxiliary mapping
©?. However, the novelty of our method lies in never constructing such singular basis
functions.

We now describe our method, the Method of Auziliary Mapping (MAM). Suppose
the exact solution {u} has singularities at Py, P,, ..., Py. In what follows, u denotes the
displacements u, and u,. In this case, our method goes as follows:

Step 1: Determination of the Singular Regions

At each singular point P,, construct a neighborhood of the singular point P, a
sector S, centered at P;. Namely,

S;={(r,0):0<r<R;}NQ,

where (r,0) are the polar coordinates at P,. Our method is not sensitive to the size
of the radius R,, provided R, is chosen small enough so that S, is a circular sector in
? and any two different neighborhoods of two singularities are disjoint. R, is usually
selected to be < 1.

Step 2: Selection of Auxiliary Mappings

10




Suppose Ag'l) is min{Re();;)}, where ), are the eigenvalues of the singularity at

P,. Then the mapping sizes of auxiliary mappings are selected as follows:

—}3, if M7 <1,
ﬂq = Aql (32)
1, otherwise.

Now the auxiliary mapping ¢ : S; — S, is defined by z = ¢#(() = (*, a conformal
mapping from the (-plane to the z-plane.

Step 3: Triangulation of

For each S, , generate a curvilinear triangulation 7, of S, as shown in Fig. 4.1.
Then construct a triangulation 7 on Q such that T'|s, = 7,. Let 7" be the image of
T, under (p%)7! (see, Fig. 4.1).

Fore* € T* (e € To = T\UT,), @ ( ®.) is the usual elemental mapping from the
standard element §,; (which is either the reference triangle or rectangle depending on
whether e* (e) is a triangular or a rectangular element) onto curvilinear elements e*(e)
respectively. Since we allow circular arcs as sides of elements, the elemental mappings
could be of the blending type([14]) as those in chapter 6 of ([36]) and satisfy the usual
technical conditions([4],[20]) that lead to conforming finite elements.

Step 4: Computation of Stiffness Matrix and Load Vector.
In computing local stiffness matrices and local load vectors,

e Use the standard elemental mapping @, for the elements e in the nonsingular
region (o = Q\ UM, S,.

e Use the standard elemental mappings ®.. for the elements e in the s.ngular
regions UM, S;: in other words, local stiffness matrices and load vectors on the
element e in the singular region are replaced by those computed on the elements
e« = (¢?)~(e) by using the right hand sides of equations (28) and (29).

Let ®° denote the special elemental mapping from €, onto e € 7, defined by
®5 = P10 &,.. We will call this special elemental mapping ®° the singular elemental

mapping.

Remark 4.1. (1) If ®5 is used as the elemental mapping on the element e in
a singular region S, then the basis functions constructed through &5 will mimic the
original singularity on S;.

(2) Suppose €, € Ty , e2 € UT, and v = e; Nez = {(r0,0) : a < 6 < b}. Then the
conformal mapping (¢%1)~! is linear on the closed interval [a, b]; therefore, the basis
functions constructed by using the usual elemental mapping ®, for ¢ C 0y and the
singular elemental mapping ®5 for e C US, are continuous along their common edges.

11




Let AV; be the standard shape functions on Q,, N7 = Njo®:! and N; = Njo(®5)™1.
Then N o ¢ = N;. Hence, from Lemma 2.1 , we have

/_/; VNila;)(VN;)Tdz = //;_ V/\/,-'[q.'j](VJ\/j')Tdf (33)
[[ M5z = [[ 1561iN;de 3

Instead of computing the left-hand sides of (33)-(34) involving singular shape functions,
we compute the right-hand sides of the equations for the local stiffness matrix and load
vector on the elements e in the singular regions. Let us note that from Lemma 3.1
the coefficient ¢;; are not singular. Moreover, If § is chosen to be an integer > 2, the
integrand of the left hand side of (34) is as smooth as f.

Thus, the computer implementation of our method is quite simple since any existing
finite element code can be used for the computation of the right-hand sides without any
alterations. Indeed, in MAM, unlike other singular function approaches, the banded
structure of the resulting stiffness matrix is not lost and no severe problem with ill
conditioning will occur.

6'=w,/ B,

E\; *
S q — P sq
6=0 6°=0
P —]
1 r 8
q

Fig. 4.1. A singular neighborhood S, of a singular point P, and its mapped
domain S7 under the mapping P+, The scheme 7. on S and the corresponding mesh
7, on S,.
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Let V, = {{w} = (w;,w2) € HH(Q) : wi|c 0 D(wi]. o ®5) is a polynomial of degree
p on §,; for all elements ¢ in §2 (e in U:!_:IS,,)}, where (Q,, is the standard triangle,
T, or the standard rectangle, @, according to whether e is a triangular element or a
rectangular element. Then the p-version of the Finite Element Method in our
context is as follows: Find an element {u,} € V, such that

B({up}, {v}) = F({v}), for all {v} € V}. (35)

The dimension of V, will be denoted by N, and will be called the degree of free-
dom(DOF). Let us note that in the p-version of the finite element method the trian-
gulation of () is fixed and only the degree p of the basis polynomials is increased.

If {u..} is the solution of (6) then

Iop) — fueekls = min [}~ {uechls @)
where ||[{w}||% = %B({w}, {w}) is the energy norm.

4.2 The Rate of Convergence.

Let © and S, be the same as those in the preceding argument. Suppose u.z|a, €
H*(Qo), tezls, € H*(S,), w0 >2, v,<2, 1<q<M,andif A7 = min{Re();;)} <
1, then our method with auxiliary mapping ¢%, 8, = 1/ Ag? will greatly reduce the in-
tensity of the singularity at P,. Therefore, ft.; = ues|s, 0 % € H*(S;) and 4] > 2,
which is larger than v,.

By using the inequality (see [30] for detail),

lvlls < oll,s-

the following theorem was proved in ({30]).

Theorem 3.1. Suppose ugﬁl""’p’") is the finite element solution, on a quast uni-
Jorm mesh, obtained by employing the method of auziliary mapping with the auziliary
mapping ©%¢ on each singular region S, in the framework of the p-version of the finite
element method. Then we have

Cou“ez“m.ﬂo +Z \ I“ez“v 53 (37)

p ""vﬁ
Jlufr ) — uesli0 N 72 (v'—x)/z

where N, is the degree of freedom and, for each q, 0< q< M, C, is independent
of N,.
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4.3 Computation of Strains and Stress

The strains are computed from the strain-displacement relationships and the stresses
are computed directly from the strain-stress relationships. However, in MAM, those
computations on the singular regions are different from the standard approach.

(4.8A). Suppose 9 is the inverse mapping of the auxiliary mapping ¢ : S* — S,

defined by (26), and J(¢®) = 8(z1,72)/8(&1,¢&;) denotes the Jacobian matrix of P.
Then [J(¥) 0 ¢?] - J(¢®) = I and hence

[J(@)]™ = J(%) 0P (38)

Moreover,

J®) = J(¥)oy’

cos(}—_-ﬁ)ﬂ — sin( 1- '3)0

1
= —(r)-A)8 f B 0
B sin 1-8 cos 1-5
( 3 ) ( 3 )8
_ 1 g cos(1-B)g" —sin(1 - B)6"
B E(r ) ? [ sin(1 — B)¢* cos(1 — B)o* ] ’ (39)

Let us recall the singular elemental mapping for an element e is defined by
5 =pod:E e,

where ¢ : ¢* — e is the auxiliary mapping defined by 2 = £ and ® : E — e* is the
standard elemental mapping. Now we have

[1@%)]" = U(poo)™
= J(ipod]™)o(po®)
= [J(@ ' op™)|o(po®)
= [(J(@ ) op™)-J(e™)] o (po @)
= {(F(@®)] " 0@ ) op™)-

(V@)™ 0p™)} o (0o @) by (38)
= (V@) (V@) o @)

and hence

@)™ = W o) - (@I
W™ 0 &) - (@), (40)
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Suppose P = (z,,z32) is a point in an element ¢ C  and let ® : E — e be the
elemental mapping. Then the strains at P are

{eM, e, 98T (P) = [D]{w,u}(P)

1 0] 00
= |0 0|Vouu(P)+]0 1| V.uy(P)
|0 1 10
(1 0] L, m )
= | 0 0| [J@)]" (P)Y asVeNi(P)
-0 1_ I=1
[0 0] o i
+ |0 1| [7@)7] ()X arsnVeNi(P),
.1 O- I=1
i
where ®(P) = P, V,—-(a 33:) and V, = (8£ -aE)T

Suppose e is an element in the s1ngula.r region on which MAM is applied, then
[J (<I>)T] is replaced by [J ((DS)T] and it follows from (39) and (40) that

7@ = (Ul 0 @) - (@)™

_ 1 w-p| cos(l —B)6* —sin(1l - B)6* Ja I
- E(r ) sin(1 — 3)8* c:)s(l - p)e ] ' [ J}: J;‘: ] » (41)

where J; is the (i, j) component of ([J(®)]7)™*.

It should be noted that in (41), the exponent (1 — 8) < 0 since the mapping size 8
is larger than 1. Thus, unlike the standard finite element solution, from (41), we can
see that the strains at the singular points, calculated from the finite element solution

obtained by using MAM, are infinity. This is because our solution by MAM resembles
the exact solution near the singularities.

(4.3B) The stresses are computed from the siress-strain relation. Usually the
principal stress and the equivalent stress are of engineering interest. The eigenvalues
of the following matrix

o1l 012
on 012

are called the principal stresses and they will be denoted by o(;) and o(3). The lines
which are perpendicular to the eigenvectors of this matrix are called the principal lines.

In the case of plane stress, the third principal stress o(3) = 0 and in the case of
plane strain, o(3) = u(a(l) + 0(3)). Now the equivalent stress is defined as follows:

o =3 [(0(1)—0(2)) + (0 =~ 0@)’ + (03) — ow)’] -

15




5 Numerical Results

In [28] and [30] some comparisons were made between MAM (the Method of Auxiliary
Mapping) and some of the best of alternative methods such as Finite Difference, Finite
Element, and singular function methods. As benchmarks, elliptic problems having
coraer, jump boundary data, or interface singularity were considered. In comparisons
given there, it was shown that MAM virtually requires no extra cost. Since CPU
time comparisons for elasticity problems between MAM and alternative approaches
are essentially the same as those in the previous papers, we only compare accuracy
versus DOF(Degree of Freedom) between MAM and the conventional approach in the
framework of the p-version of the Finite Element Method.

In the first two examples, the performance of the Method of Auxiliary Mapping in
the framework of the p-version of the Finite Element Method will be tested using the
elasticity problems whose true solutions are known. In this section, all computations
are the plane stress. Recall the auxiliary mappiny, is defined by

P(r,8) = (r’ cos(B6), r” sin(0)) (42)

The number B is called the mapping size of the auxiliary mapping. Throughout this
section, “ With Map ” stands for the results obtained by applying MAM on Mesh I(the
initial coarse mesh), shown in Fig. 5.1. “ No Map ” stands for the results obtained by
the standard Finite Element Method on Mesh I without applying MAM.

Example 5.1I. Suppose the tractions are free along the boundaries a = £ in Fig.
3.1. Then by using a similar argument given in §3.1, the smallest eigenvalue is A = 0.5
and the corresponding stress functions are

o, = ArP=1{(2 ~ Q(A + 1)) cos((A — 1))

—(A = 1)cos((A - 3)0)} (43)
o, = A2+ Q) +1))cos((A—1)0)

+(A = 1) cos((A — 3)0)} (44)
Ty = AP =1)sin((A — 3)0)

+Q(A + 1) sin((A — 1))}, (45)

where A = 0.5 and @ = 1/3.

Let us consider the equations of elasticity on a domain ; = {(z,y): -2 <z <
2,—-2 < y £ 2} shown in Fig. 5.1, with crack along the negative z-axis, which is
isotropic with material constants E = 1000(modulus of elasticity) and v = 0.3 (Pois-
son’s ratio).

The traction functions given by (43)-(45) are imposed along the entire boundary
of €, including both sides of the crack. Furthermore, the following constraints are
imposed: the displacement vector at (0,0) is fixed and the y-components of the dis-
placement vector at (2,0) is fixed.
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On the mesh shown in Fig. 5.1, MAM is applied with mapping size 8 = 4. In
order to show the effectiveness of MAM, the true stress, the computed stress obtained
by using MAM, and the computed stress by the standard Finite Element Method are
compared one another. In Fig. 5.2, the stress o, on [0,1] X [—7, ] are compared. In
Fig. 5.3, the shear stress 7, are compared on the same subregion. From Fig. 5.2 and
Fig. 5.3, one can see that MAM is quite effective in handling crack singularity. In
other words, one can not see any difference between the true stress and the computed
stress obtained by using MAM. However, there is significant difference between the
true stress and the computed stress by the standard FEM. The stress tensor along the
line y = 0.0129 are given in Table 5.1.

The crack singularity discussed in Example 5.1 is not too strong. Thus it is possible
to obtain a practical solution by sufficiently refining the mesh on the domain ;. How-
ever, as mentioned in §3.1, there are some elasticity problems containing singularities
which are too strong for the mesh refinement method to yield any practical solutions.

In the next example, it will be shown that MAM can give an accurate solution
even for those problems to which the mesh refinement method alone can not yield any
practical solutions.

©,2)
(-2,2) 2,2)
Crack
(‘2' 0) (21 o)
(-2,-2) (0, -2) (2,-2)

Fig. 5.1. The scheme of the domain §; and Mesh 1.
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Table 5.1. The Stress 0;, gy, 7y along the line y = 0.0129: True(True stress), With
No Map(computed Stress by the standard FEM) and With Map (computed Stress by
using MAM). The computed stresses are obtained by using basis functions of order 8.

Oz

z Yy True No Map | With Map
-0.40000 | 0.0129 | 0.05093822 | 0.04823590 | 0.05089369
-0.34839 | 0.0129 | 0.06264135 | 0.15461398 | 0.06262561
-0.29677 | 0.0129 | 0.07962216 | 0.22911948 | 0.07964541
-0.24516 { 0.0129 | 0.10593000 | 0.20079910 | 0.10599321
-0.19355 | 0.0129 | 0.15069789 | 0.05516336 | 0.15078407
-0.14194 | 0.0129 | 0.23883382 | -0.05363119 | 0.23890443
-0.09032 | 0.0129 | 0.46349907 | 0.37045664 | 0.46355612
-0.03871 | 0.0129 | 1.48632567 | 2.41385925 | 1.48644065
-0.01290 | 0.0129 | 3.83449701 | 4.62512498 | 3.83435649
0.01290 | 0.0129 | 4.42121220 | 5.63512478 | 4.42443179
0.03871 | 0.0129 | 4.52331891 | 4.53508576 | 4.52399697
0.09032 | 0.0129 | 3.25283283 | 3.16439666 | 3.25273651
0.14194 | 0.0129 | 2.62989437 | 2.47764699 | 2.62995116
0.19355 | 0.0129 | 2.26172620 | 2.13848521 | 2.26183925
0.24516 { 0.0129 | 2.01336763 | 1.95231425 | 2.01344754
0.40000 | 0.0129 | 1.57929020 | 1.58108784 | 1.57924127

Oy Ozy

True No Map With Map True No Map With Map
0.00003312 | -0.02967877 | -0.00014424 | -0.00123211 | 0.00510379 | -0.00123076
0.00005368 | 0.03406785 | -0.00003871 | -0.00173954 | -0.07977106 | -0.00176440
0.00009401 | 0.09624285 | 0.00012811 | -0.00259535 | -0.13304302 | -0.00265020
0.00018323 | 0.08994510 | 0.00034680 | -0.00417904 | -0.08602245 | -0.00426194
0.00041800 | -0.03752552 | 0.00063424 | -0.00752793 | 0.08568925 | -0.00762896
0.00123034 | -0.23020095 | 0.00132026 | -0.01625616 | 0.26892630 | -0.01635764
0.00587308 | -0.15340532 | 0.00583234 | -0.04945086 | 0.07111119 | -0.04952390
0.09964524 | 1.07899882 | 0.10064434 | -0.36327765 | -1.38006892 | -0.36333288
1.83132606 | 2.65316096 | 1.83542437 | -2.41804125 | -3.04412791 | -2.41681990
9.25729470 | 6.04753022 | 9.25774822 | 1.00158548 | 1.19976481 | 1.00025011
5.24987421 | 4.78600541 | 5.25097506 | 0.69334021 | 0.73212362 | 0.69287164
3.35173455 | 3.25907239 | 3.35178881 | 0.22881300 | 0.22695570 | 0.22885594
2.66240669 | 2.52571398 | 2.66266548 | 0.11880174 | 0.05174389 | 0.11869870
2.27678206 | 2.17434706 | 2.27711095 | 0.07513994 | 0.02115217 | 0.07496224
2.02172571 | 1.97913221 | 2.02198072 | 0.05287338 | 0.03560597 | 0.05272972
1.58175442 | 1.57152579 | 1.58166512 | 0.02545255 | 0.04008938 | 0.02552800
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Fig. 5.2. The stress o, on [0,1} X [~7,]): (a) True stress, (b) computed stress by
MAM, and (c) computed stress without using MAM. In cases (b) and (c), the number
of degrees of freedom are the same and basis functions of order 8 are used.
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Fig. 5.3. The stress 7,y on [0,1] x [—7, 7]: (a) True stress, (b) computevd stress by
using MAM, and (c) computed stress without using MAM. In cases (b) and (c), the
number of degrees of freedom are the same and basis functions of order 8 are used.
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Although this paper is concerned with the equations of elasticity on polygonal
domains, for brevity, we consider an elasticity problem on a sector region in the next
example.

Example 5.I1. Consider the equations of elasticity (11) and (12) in a wedge-shaped

domain
Q) = {(r,8):r<2,—a<h<a},0<a<90°

which is isotropic with material constants £ = 1000 and » = 0.3. The displacement
functions given below satisfy the equations of elasticity in the domain Qg*") :

W) = I{-0+150) (46
W) = (-, )

where

f(8) = sin(A+1)0

A:ﬂ)-—l
a
E
¢ = W

The corresponding stress tensor are

or = rO-D{(A+1)—(A+1)*}sin() +1)9,
o = r* YA +1)sin(A +1)8,
Tre = —r"‘l)\(k + 1) cos(A + 1)0.

It is worth noting that uy = 7,4 = 0 along the boundary 6 = +a. Thus this problem
could be solved so that the condition us = 0 would be imposed by proper combination
of u, and u,. Nevertheless, here we will impose the displacements(nonhomogeneous
essential boundary conditions) along the entire boundary of the domain. Let us note
that the displacements are strongly singular at the vertex. In this example we show
that our method performs very well even for this case. In the p-version of Finite
Element Method, used for this example, the essential boundary conditions are imposed
by the L, projection. Hence the error of the method now includes also the error of
the approximation of the boundary condition. Therefore, we have to expect that the
strain energy will not necessarily be monotonically decreasing with p, the order of base
functions, as it would be if the nonhomogeneous boundary condition would be satisfied
exactly ( See also remark 5.1). Let us note that in all other examples mentioned in this
paper natural boundary conditions are used; hence the strain energy is monotonically
increasing with p.
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Let Q) be the upper half of 2** as shown in Fig 5.4. Along the entire boundary
of n§°’ , the following displacement functions in the z-y coordinate system are imposed:

Uy = u,cosf — ugsinf
u, = u,8in6+uypcosb
which correspond to the displacement functions (46) and (47) in the polar coordinate

system. The singularity of this problem can be as strong as desired by taking a close
to 90° as shown in Fig. 3.2 and Table 5.2.

Furthermore, it is not difficult to show that

aa';’ = A MO Ysin(A - 1)6,
a—auyi = A=Y cog(A - 1),
%';_z = AMO-Dcos(x — 19,
%;;’- = —AxPDgin(A - 1)9,

where A = ~(A +1)/(2G). Thus, for six representative wedge angles a = 50°,60°,70°,
80°,85°,89°, the true strain energy (1/2)B({uez}, {ttez}), {ttezr} = {uz,u;}7, on the
domain ) are as follows:

On O, U({ues}) = 0.4457011132335915D-02

On O, U({ues}) = 0.1531526418625024D-02

On O,  U({u.:}) = 0.5573484518544861D-03

On O, U({ues}) = 0.1707470731728283D-03

On 089, U({u..}) = 0.6899588499654107D-04

On 0, U({ue:}) = 0.1178312402203123D-04.

Now Q) = {(r,8) : r < 1,0 < 0 < a} C O is chosen as a singular region, a
neighborhood of the singular point (0,0), on which MAM will be applied. As it was
mentioned in Remark 3.2,

uz 0" and uy 0f .

are imposed along the boundaries 6* = 0 and §* = % of (%) = {(r*,0*) : r* <
1,0 < a/B}. Here B is an optimal mapping size, 1/) = /(90 — a).
Table 5.2. The eigenvalue A = 90°/a — 1 for six representative wedge angles a.

al| 50° 60° 70° 80° 85° 89°
A | 0.80000 | 0.50000 | 0.286714 | 0.125 | 0.0588235 | 0.01124
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Fig. 5.4. The scheme of Mesh I on the domain Q.

0=
0=0/2
X-axis
— 1 2
| 0.15
p——0.15"
b 0,15°
.15

Fig. 5.5. The scheme of Mesh V on the domain Q{®.
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Table 5.3. The strain energies on the domain an) for a = 50°,60°,70°, 80°, 85°, 89°
when MAM is applied.

p-deg | DOF 50° 60° 70°
1 2 0.4387492745431457D-02 | 0.1520859482894121D-02 | 0.5567345729310525D-03
2 10 | 0.4456887439527751D-02 | 0.1531572785147233D-02 | 0.5573874898294548D-03
3 22 | 0.4457011922197191D-02 | 0.1531527952481516D-02 | 0.5573494680021682D-03
4 42 | 0.4457011143393066D-02 | 0.1531526450827115D-02 | 0.5573484777837966D-03
5 70 | 0.4457011132531040D-02 | 0.1531526419381477D-02 | 0.5573484525381751D-03
6 106 | 0.4457011132340058D-02 | 0.1531526418643714D-02 | 0.5573484518728477D-03
7 150 | 0.4457011132336056D-02 | 0.1531526418625500D-02 | 0.5573484518549730D-03
8 202 | 0.4457011132335964D-02 | 0.1531526418625041D-02 | 0.5573484518544919D-03

p-deg | DOF 80° 85° 89°
1 2 ]0.1709561207603345D-03 | 0.6906812121402299D-04 | 0.1178639537517020D-04
2 10 | 0.1707578614952583D-03 | 0.6899855353039026D-04 | 0.1178322837770610D-04
3 22 | 0.1707473741570929D-03 | 0.6899596270247496D-04 | 0.1178312715834583N-04
4 42 1 0.1707470816190254D-03 | 0.6899588725323426D-04 | 0.1178312411538886D-04
5 70 [ 0.1707470734116305D-03 | 0.6899588506198350D-04 | 0.1178312402485034D-04
6 106 | 0.1707470731796349D-03 | 0.6899588499832774D-04 | 0.1178312402218292D-04
7 150 | 0.1707470731730394D-03 | 0.6899588499647640D-04 | 0.1178312402211005D-04
8 202 | 0.1707470731728518D-03 | 0.6899588499642211D-04 | 0.1178312402209949D-04

Table 5.4. The strain energy on the domain Qg") obtained by the optimal mesh
refinement, Mesh V.

p-deg

DOF

50°

60°

70°

10
42
78
138
222
330

, 462

618

0.4405670020540130D-02
0.4457420260186373D-02
0.4457064766350695D-02
0.4457017168219616D-02
0.4457011931428601D-02
0.44570112491?4450D-02
0.4457011150167903D-02
0.4457011135802711D-02

0.1566487115006998D-02
0.1534472170765279D-02
0.1531924078512398D-02
0.1531597705602884D-02
0.1531546547014034D-02
0.1531535988017260D-02
0.1531531515488644D-02
0.1531529449633110D-02

0.6053103198646025D-03
0.5647415490783892D-03
0.5606895925910377D-03
0.5597224836509342D-03
0.5591135803203382D-03
0.5587320835784172D-03
0.5582545129703971D-03
0.5579538617159367D-03

DOF

80°

85°

89°

(DRIOQQ\ACQMH% GO =IO Ot = W N =
o]

10
42
78
138
222
330
462
618

0.2889017640162947D-13
0.2534095506899352D-03
0.2473114711669522D-035
0.2445714254542476D-03
0.2337583505325639D-03
0.2253173665961850D-03
0.2092777698103482D-03
0.1981310492965937D-03

0.3576618879140340D-03
0.3505035342285137D-03
£.3607138018058794D-03
0.3701802501488918D-03
0.3375931456911586D-03
0.3105604155630747D-03
0.2447446052984088D-03
0.1968803334211282D-03

0.6182592096409667D-03
0.7129742782372550D-03
0.7936052278053867D-03
0.8591464052345034D-03
0.7918101347523176D-03
0.7325557688296332D-03
0.5464419176391876D-03
0.4054869521310821D-03
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Throughout this paper, to measure the error of the finite element solutions, we use
the following definition:

_ [M({ue}) = U({ure})(]?
IElEr = ) .

That is, it is the square root of the difference between the true strain energy and the
computed strain energy divided by the true strain energy. It was shown in ([36]) that
I€llg,s is actually the relative error in the energy norm, provided that one of
the following cases applies: all Boundary conditions are either homogeneous Dirichlet
or arbitrary Neumann boundary conditions; some Dirichlet boundary conditions are
nonhomogeneous, but all other boundary conditions are either homogeneous Neumann
or homogeneous Dirichlet and the governing equations are homogeneous. Moreover
all examples in this section are one of these cases. Hence in what follows we will call
I€l|E,» the relative error in the energy norm.

(48)

For the various wedge angles a, the total strain energies on 93"’ obtained by ap-
plying MAM on Mesh I, shown in Fig. 5.4, are given in Table 5.3. The relative errors
in the energy norm(%) are given in Fig. 5.6. By comparing with the true solutions, we
can conclude that MAM is able to yield accurate solutions at virtually no extra cost,
no matter how strong singularity the problem contains.

In order to compare the results obtained by MAM with those obtained by the mesh
refinement method, Mesh I of 4 elements(see, Fig. 5.4.) are refined by putting circular
layers of radii o,02, 0% 0%,0% 0%,07,0° centered at the origin, where o = 0.15 (which
is known to be an optimal geometric ratio for a geometric mesh refinen.ent for the h-p
version of FEM). The refined mesh obtained by putting 2, 3, 4, ..., 9 layers will be
denoted by Mesh II, Mesh III, Mesh IV.,..., and Mesh IX, respectively. These meshes
have 6, 8, 10, 12,...,, 20 elements respectively. For example, Mesh V is as shown in Fig.
5.5.

The strain energy, obtained by applying the standard FEM with the refined Mesh
V to the problems on the domain Qg" are given in Table 5.4. And their relative errors

in the energy norm, |||z, computed by using the true strain energy are shown in
Fig. 5.7.

Remark 5.1. The energy reported in the tables 5.3, 5.4, 5.5 are not monotone
with p. This is caused by the fact that the boundary condition is imposed only ap-
proximately. For higher p this error has small influence and the energy decreases as it
would occur if the (essential) boundary condition would be exactly imposed.

Table 5.4 and Fig. 5.7 show that the mesh refinement method can handle the weaker
singularities. However it fails to give any practical solution of elasticity problems with
very strong singularities such as the cases when a > 75°. In order to show this fact
vividly, the standard FEM is applied to the case when a = 89° with further refined
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meshes; Mesh I, Mesh III, Mesh V, Mesh VII, and Mesh IX. The computed strain
energies for those geometrically refined meshes are given in Table 5.4 and Table 5.5
and their relative error in the energy norm are shown in Fig. 5.8. In this case, by the
massive geometric mesh refinements, finite element solutions are improved a little bit.
However, the accuracy is not acceptable at all. In other words, the h-p version of the
FEM fails for this problem.

Remark 5.2. (1) Even Though 8 = /(90 — @) is an optimal mapping size
for the problems on the domain Qg") , MAM with other choice of mapping size yields
approximate solutions of practical accuracy. Actually MAM with mapping size (> 100)
yields the relative error in the energy norm < 3% when the order of basis functions is
8 and Mesh I is used for the problem on the domain Q%)

(2) It is worth noting that MAM can handle the elasticity problems even when the
boundaries of the neighborhoods of their singularities are imposed by non-homogeneous
essential boundary conditions.

10' 3
10°}
3
10" 3
3
10°}

10°

o PP — ”D.'
TF  —>— wog

RELATIVE ERROR IN ENERGY NORM (%)

" PN SV S Y N e dedeerdbesndnd el

10’ 10°
NUMBER OF DEGREES OF FREEDOM

Fig. 5.6. The relative error in the energy norm(%) when MAM is applied
with Mesh 1.
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Table 5.5. The strain energies on the domain

MAM.

QgBQ)

obtained without applying

p-deg

DOF

Mesh 1

DOF

Mesh 111

2
10
22
42
70

106
150
202

0.8348764761969085D-03
0.8363598689554478D-03
0.9184008854068470D-03
0.9931577497683493D-03
0.9137775851488808D-03
0.8430469500300520D-03
0.6223823176457848D-03
0.4550174531945867D-03

6
26
50
90

146
218
406
510

0.6720455342291412D-03
0.7753691417481764D-03
0.8631892906394158D-03
0.9345644101368223D-03
0.8612360703348015D-03
0.7967076857397165D-03
0.5940288770994173D-03
0.4405282879009032D-03

DOF

Mesh VII

DOF

Mesh IX

9
oo-ac»c.u.hwwo-‘g. 00O W N

14
58
106
186
298
442
618
826

0.5688829276912590D-03
0.6556907603472391D-03
0.7297117726166816D-03
0.7898923442515647D-03
0.7280587060296026D-03
0.6736470524085897D-03
0.5027442583422036D-03
0.3733095376025999D-03

16
72
132
232
372
552
772
1032

0.5235413474168798D-03
0.6030890129562007D-03
0.6710403386777638D-03
0.7262984181673099D-03
0.6695176825383317D-03
0.6195529458233573D-03
0.4626180089851831D-03
0.3437619833159763D-03

RELATIVE ERROR IN ENERGY NORM (%)
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Fig. 5.8. The relative error in the energy norm(%) when the h-p version of the
Finite Element Method is applied for the problem on the wedge domain Qg") of a = 89°.

In the first two examples, the smallest eigenvalues A were known. Thus, it was
possible to choose an optimal mapping size 8 = 1/\. However, in engineering practices,
the exact eigenvalues, which represent the intensity of singularities, are not known in
advance. The next two examples demonstrate that MAM succeeds in yielding good
approximate solutions even for these cases.

Example 5.III. Let us consider the equations of elasticity on a domain 23 shown
in Fig. 5.9, which is isotropic with material constants; £ = 1000 and v = 0.3. Suppose
the boundary conditions are given as follows:

(1) up=0,u; =0 (fixed) along I’y UT,,

(2) T.=10,T; =2 along I},

(3) T, =0,T; =0 (traction free) along INN\(I'; UT2 UT5).
Then it follows from the arguments in §3.1 that this problem has singularities at the
crack tip P;(0,0) and the corner P;(2,2). Moreover, suppose the body force is zero,

that is, {f} = {0,0}7, then min{Re();)} are approximately 0.3 and 0.7 at P,(0,0) and
Py(2,2) respectively.
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Fig. 5.9. The domain )3 and the line segment L which is on the straight line
y = z(tan x/8).

For the finite element approach, we construct two meshes, Mesh I and Mesh II
on  as shown in Fig. 5.10. Mesh II is obtained from Mesh I by putting layers of
radii 0.5,0.50,0.50%,0.50° centered at P, and layers of radii 0.5,0.5¢,0.502 centered
at P, where 0 = 0.15. Mesh I and Mesh II have 22 and 48 elements respectively.
In Example 5.111, we use the mapping size # = 6 and 8 = 2 on the singular regions
S5 = {(z,9) : l(z,y) — (0,0)) < 0.5} and S; = {(z,y) : ll(=,y) - (2,2)]] < 0.5}
respectively.

In Examples 5.111, “ With Map ” stands for the results obtained by applying MAM
on Mesh I. “ No Map ” and ” 48EL ” stand for the results obtained by the standard
Finite Element Method on Mesh I and Mesh II respectively without applying MAM.

The total strain energy obtained by the following three ways is listed in Table 5.6:
the p-version of the FEM on Mesh I by applying MAM(With Map); the p-version of
the FEM on Mesh I with no Map(No Map); the p-version of the FEM on Mesh II with
no Map(48EL).
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Fig. 5.10. (a) Mesh I (22 elements); (b) Mesh II (48elements).

Table 5.6. Total strain energy on 3. when the body force is zero.

p-deg

With Map

48EL

No Map

OO0 ~J O Ut W

1.702132029810480
2.061010428583605
2.093985634086386
2.110046396546211
2.113129774277219
2.113560741772014
2.113727076747088
2.113785840066801
2.113804271632455

1.656404349217337
2.018717728104414
2.063320794501468
2.082748318204508
2.089615423359967
2.093441297022001
2.096139989799332
2.098163679729239

1.231603737683330
1.605510783438384
1.736330296578600
1.815186503511321
1.864716288927604
1.899152183780876
1.925085281651720
1.945329260774251

By applying the extrapolation approach given in Chapter 4 of ([36]) to the second
column of Table 5.6 and the fourth column, DOF, of Table 5.7, we obtain U(u..) =
2.113815563245032, the computed true total energy.

Table 5.7 is the relative error in strain energy(%) computed by applying the com-
puted true energy to Table 5.6. And they are plotted in Fig. 5.11.
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Table 5.7. Relative errors in the energy norm (%) and Degree of Freedom for the
cases in Table 5.6.

p-deg | With Map | No Map | DOF | 48EL | DOF
44.131 | 64.603 38 | 46.517 92
15.805 | 49.038 | 120 | 21.209 | 280
9.686 | 42.259 | 226 | 15.456 | 488
4223 | 37.587 | 376 | 12.123 | 792
1.801 | 34.328 | 570 | 10.700 | 1192
1.098 | 31.867 ) 808 | 9.818 | 1688
0.647 | 29.880 | 1090 | 9.144 | 2280
0375 | 28.232 | 1416 | 8.605 | 2968
0.231 1786

WO ~ITOH Ok W -

In this example, the displacements vary within very small ranges. Hence we can not
see a clear distinction between “With Map” and “No Map” when their graphs are plot-
ted. However, the differences are clear when the stresses are compared. As an example,
the z-component (U) of the displacement and the equivalent stress (o.) at the points
(r,x/8), for r = 0.9,0.8,0.7,0.6,0.4,0.3,0.2,0.1, and —0.1, 0.2, —0.3, —0.4, —0.6, —0.7
along the line y = ztan(x/8) are listed in Table 5.8.

The equivalent stresses along the line L(see, Fig. 5.9), given in Table 5.8, for three
caves are plotted in Fig. 5.12. In case of applying MAM, the basis functions resemble
the true solution around the singularities, hence the stresses near the singularity at
Py(0,0) are very large. Actually, the equivalent stress at P;(0,0) is infinity. We plotted
the graph of the equivalent stresses on . = [-2,-2] x [-2,-0.1] in Fig. 5.13. In
Fig. 5.13, the z-grid and y-grid sizes are 0.2 and 0.1 respectively. In this example, the
equivalent stress of “With Map” is much bigger than “No Map” near the singularity
at P;(0,0). One can notice this fact from Fig. 5.13.

The equivalent stresses along the line L(see, Fig. 5.9), given in Table 5.7, for three
cases are plotted in Fig. 5.12. In MAM, the basis functions resemble the true solution
around the singularities, hence the stresses near the singularity at P;(0,0) are very
large. Actually, the equivalent stress at P;(0,0) is infinity. We plotted the graph of the
equivalent stresses on {1, = [—2, —2] x [-2,-0.1] in Fig. 5.13. In Fig. 5.13, the z-grid
and y-grid sizes are 0.2 and 0.1 respectively. In this example, the equivalent stress of
“With Map” is much bigger than “No Map” near the singularity at P,(0,0). One can
gsee this fact from Fig. 5.13.
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Fig. 5.11. Relative error in the energy norm(%) for the domain 23 containing two
corner singularities.
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Fig. 5.12. The equivalent stress along the line L shown in Fig. 5.9. The scale
on the horizontal axis represents the radius r of the polar coordinates (r,7/8) of the
points on L. For these computations, basis functions of order 8 are used.
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Fig. 5.13. The graph of equivalent stress on . = [-2,2] x [-2,-0.1] : (2) No
Map: (b) With Map. The z-grid and the y-grid sizes are 0.2 and 0.1 respectively. The
order of basis functions used for this computation is 8.

Table 5.8. Equivalent stress (o) the displacement (U: z-displacement ) along the
line L in Fig. 5.9. For these computations, basis functions of order 8 are used.

With Map No Map 48EL
r U o, U O U o,

0.9 | 6.836E-6 | 4.421 | -2.153E-4 | 3.945 | -1.361E-5 | 4.375
0.8 | 2.516E-4 | 5.807 | -1.243E-6 | 5.234 | 2.280E-4 | 5.833
0.7 | 5.075E-4 { 7.762 | 2.226E-4 | 6.874 | 4.806E-4 | 7.678
0.6 | 7.695E-4 | 10.147 | 4.501E-4 | 8.972 | 7.391E-4 | 10.038
0.4 | 1.280E-3 | 17.647 | 8.953E-4 | 15.504 | 1.252E-3 | 17.452
0.3 | 1.535E-3 | 24.220 | 1.090E-3 | 21.029 | 1.493E-3 | 23.936
0.2 | 1.754E-3 | 35.811 | 1.250E-3 | 31.129 | 1.705E-3 | 35.338
0.1 | 1.908E-3 | 64.809 | 1.292E-3 | 52.415 { 1.848E-3 | 63.761
-0.1 | 2.003E-2 | 44.053 | 1.547E-2 | 36.843 | 1.963E-2 | 43.508
-0.2 | 2.253E-2 | 26.962 | 1.891E-2 | 23.818 | 2.218E-2 | 26.716
-0.3 | 2.430E-2 | 20.401 | 2.072E-2 | 20.083 | 2.397E-2 | 20.217
-0.4 | 2.576E-2 | 16.809 | 2.251E-2 | 14.149 | 2.546E-2 | 16.687
-0.6 | 2.831E-2 | 12.881 | 2.524E-2 | 12.135 | 2.803E-2 | 12.791
-0.7 | 2.949E-2 | 11.660 | 2.650E-2 | 11.066 | 2.921E-2 | 11.636
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So far we have considered the corner singularities on isotropic elastic bodies. How-
ever, the interface singularity caused by an abrupt change in material properties in an
elasticity problem has a similar structure to that of the corner singularity. However,
the interface singularities are usually more complex and stronger than the corner sin-
gularities. In order to show that MAM can also handle this type of singularity, our

next example concerns an elasticity problem with two interfaces.

Example 5.IV. Consider the equations of elasticity on the domain 24 shown in
Fig. 5.14 that is composed of three isotropic materials. That is, 4 = 4 U Q42 U Qy3,
and the material constants on each subdomain are given in the following table:

On 941 On 942 On 943
E 1000 10 1000
v 0.1 0.001 0.3

We also assume that it has a nonzero body force, {f} = {10,1000}7.

(‘2- 2)

Free

Fixed

-2,0)

Free

(0,0)

2,2)

Free

20

Fig. 5.14. The domain Q4 for the interface problem with two interfaces.

This interface problem has singularities at P;(0,0), P2(2,2), and P3(—2,2). Thus we
choose the neighborhoods S; of the singularities as follows: S; = {(z,y) : ||(z,y)-P;l| <




0.5},7 = 1,2,3. A mesh on §4 that is compatible with these neighborhoods of the
singularities are shown in Fig. 5.15.

The success of the Method of Auxiliary Mapping depends on the choice of the
mapping size B of the auxiliary mapping. In our method, a circular sector, § =
{(r,80): 0 < 0 < 8p,r < 1o}, is mapped onto S* = {(r*,6°): 0 < * < 6y/B,r* < r(l,/ﬂ},
by the mapping ¢~*(r,8) = r'/P(cos8/B,sin0/B). Thus, if the mapping size, S, is
very large then the mapped region will consist of very narrow circular sector elements.
Nevertheless the convergence theorem given in the previous section still holds since
these elements satisfy the maximal angle condition ([3]) which allows one angle to be
arbitrarily small.

In this example, “8 = (B, B2, 3) ” means the results obtained by applying MAM
with the auxiliary mappings of size 8;, B2, A5 for the singular regions S;, S;, S3 respec-
tively. In particular, “g = (1,1,1)” stands for the case when no mapping technique

is used. The total strain energy obtained by the various choices of mapping sizes are
listed in Table 5.9.

Table 5.9. Total strain energy for the interface problem.

p-deg | B = (8,10, 10) B =(510,10) | DOF

W00 =IO UV W N

123032.2828452089
150287.7980849437
158804.9631362990
161232.7426132401
161708.1813612756
161749.2509783793
161760.1348046330
161761.8532415435
161762.9347649495

123284.2678773375
152583.4051500356
159786.2535574225
161314.8716586071
161697.6525341540
161745.8457528930
161758.1355019662
161760.3221783005
161761.8908487467

38
116
210
344
518
732
986
1280
1614

p-deg

B= (5’ 5, 5)

B= (1,1’1)

DOF

116027.58299108
150578.57685495
158821.08704690
160167.37006738
160742.79149754
161051.55851408
161239.18068546
161361.96325978

58106.6173116895
88079.9225407295
97828.5205550101
104140.5899691367
108695.2364448717
112211.9290644471
115041.7425766592
117386.4326246329

38
116
210
344
518
732
986

1280

GO -1 O Ot = W N =
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Fig. 5.15. A mesh for using MAM on the domain §4 with two interfaces.

As before, extrapolating the second column of Table 5.9 gives
E(uez) = 161765.7679239559

as the computed true total energy.

Table 5.10 is the relative error in the energy norm(%) computed by using this true
energy and Table 5.9. And these relative errors in the energy norm versus the number
of degrees of freedom are plotted in Fig. 5.16.

Table 5.10. The relative error in the energy norm (%) and Degree of Freedom for
the cases in Table 5.8.

p-deg | B = (8,10,10) | A= (5,10,10) | B = (5,5,5) | B=(1,1,1) | DOF
1 48.933 48.773 53.173 80.050 | 38
2 26.637 23.825 26.300 67.491 | 116
3 13.529 11.062 13.492 62.869 | 210
4 5.740 5.280 9.940 59.685 | 344
5 1.887 2.052 7.952 57.277| 518
6 1.010 1.110 6.645 55.347 | 732
7 0.590 0.690 5.705 53.743 | 986
8 0.492 0.580 4.996 52.377 | 1280
9 0.418 0.490 1614
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Fig. 5.16. Relative error in the energy norm (%) for the interface problem.

Due to the large body force, we can see a big distinction between § = (8,10, 10)
and # = (1,1,1) even in the displacements. The graphs the y-displacement for the two
cases, # = (8,10,10) and 8 = (1,1, 1), are plotted in Fig. 5.17. Once again, the stresses
obtained by using MAM is larger than the stresses obtained by the standard FEM at
the neighborhoods of singularities. Numerical experiments show that the singularities
at P5(2,2) and P5(—2,2) are much stronger than that at P,(0,0).

From Table 5.9 and Table 5.10, we can conclude that the mapping size 83 = 5 is
not big enough for the singularity at P,. On the other hand, experiments show that
the mapping sizes §; = 10 and B; = 15 are too big for the singularities at P, and P,
respectively.

Remark 5.3. In all cases except the second example we had natural boundary
conditions and hence the energy increases with p.
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Fig. 5.17. The graph of the y-displacement over Q = [-2,2] x [0,2] : (a) No Map;
(b) With MAM. The z-grid and y-grid sizes are 0.2 and 0.1 respectively. The order of
basis functions used for this computation is 8.

If an oversized auxiliary mapping (i.e. 8> (min{Re()\)})~!) were used in MAM,
then one cannot see the expected improvement until the polynomial degree is of high
order. It was shown in ([8]) that if larger mapping size is selected, then one must choose
higher degree basis polynomials to get large improvement in accuracy. Hence, from a
practical point of view an optimal choice for the mapping size at each singular region
is B = (min{Re(};)})~*. Thus, in order to obtain optimal results from MAM, it is
desirable to know the eigenvalues A at each singularity. Actually, it can be computed by
solving trigonometric equations given in §2.1 for the corner singularity or by using the
computer code given in ([31]) for the interface singularity. Even if we do not have prior
knowledge of the eigenvalues, MAM, using an auxiliary mapping of any size § > 1,
will always yield a large improvement. In fact, since an oversized auxiliary mapping
yields better results than undersized auxiliary mapping (unless the basis functions are
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of very low degree), it is better to start with a large 3, for example 8§ = 10 in such a
case. Another possibility is to use different strengths of mappings and select the one
which leads to the largest strain energy.

6 Concluding Remarks

MAM can efficiently handle the plane elasticity problems containing such singularities
as corner and interface singularities. No matter how strong singularities the problem
contains, MAM yields an accurate solution at vitually no extra cost if the stri. tures
of singularities are known. Actually MAM can handle the elasticity problems which
even can not be solved by the h-p version of the Finite Element Method. In applying
MAM, an optimal results can be obtained if the structure of the singularities are known.
However, even if the prior knowledge on the singularities are not known, MAM can
yield very reasonable solutions to any plane elasticity problems with singularity.
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